Estimating novel potential drug targets of Plasmodium falciparum by analysing the metabolic network of knock-out strains in silico.
نویسندگان
چکیده
Malaria is one of the world's most common and serious diseases causing death of about 3 million people each year. Its most severe occurrence is caused by the protozoan Plasmodium falciparum. Biomedical research could enable treating the disease by effectively and specifically targeting essential enzymes of this parasite. However, the parasite has developed resistance to existing drugs making it indispensable to discover new drugs. We have established a simple computational tool which analyses the topology of the metabolic network of P. falciparum to identify essential enzymes as possible drug targets. We investigated the essentiality of a reaction in the metabolic network by deleting (knocking-out) such a reaction in silico. The algorithm selected neighbouring compounds of the investigated reaction that had to be produced by alternative biochemical pathways. Using breadth first searches, we tested qualitatively if these products could be generated by reactions that serve as potential deviations of the metabolic flux. With this we identified 70 essential reactions. Our results were compared with a comprehensive list of 38 targets of approved malaria drugs. When combining our approach with an in silico analysis performed recently [Yeh, I., Hanekamp, T., Tsoka, S., Karp, P.D., Altman, R.B., 2004. Computational analysis of Plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery. Genome Res. 14, 917-924] we could improve the precision of the prediction results. Finally we present a refined list of 22 new potential candidate targets for P. falciparum, half of which have reasonable evidence to be valid targets against micro-organisms and cancer.
منابع مشابه
Mapping the genome of Plasmodium falciparum on the drug-like chemical space reveals novel anti-malarial targets and potential drug leads.
The parasite Plasmodium falciparum is the main agent responsible for malaria. In this study, we exploited a recently published chemical library from GlaxoSmithKline (GSK) that had previously been confirmed to inhibit parasite growth of the wild type (3D7) and the multi-drug resistance (D2d) strains, in order to uncover the weak links in the proteome of the parasite. We predicted 293 proteins of...
متن کاملThe in Silico Characterization of a Salicylic Acid Analogue Coding Gene Clusters in Selected Pseudomonas Fluorescens Strains
Background: The microbial genome sequences provide solid in silico framework for interpretation their drug-like chemical scaffolds biosynthetic potential. The Pseudomonas fluorescens species is metabolically versatile and producing therapeutically important natural products.Objectives: The main objective of the present study was to mine the publically available data of P. fluorescens stra...
متن کاملReconstruction and flux-balance analysis of the Plasmodium falciparum metabolic network
Genome-scale metabolic reconstructions can serve as important tools for hypothesis generation and high-throughput data integration. Here, we present a metabolic network reconstruction and flux-balance analysis (FBA) of Plasmodium falciparum, the primary agent of malaria. The compartmentalized metabolic network accounts for 1001 reactions and 616 metabolites. Enzyme-gene associations were establ...
متن کاملClinical Pharmacology of the Antimalarial Chloroquine in Children and Their Mothers
Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are the parasites that infect humans. Plasmodium falciparum and Plasmodium vivax cause most of the malarial infections worldwide. Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are susceptible to chloroquine. Chloroquine was the world's most widely used antim...
متن کاملClinical Pharmacology of the Antimalarial Quinine in Children
Quinine is the best studied drug for treating severe malaria in very young children. Quinine may be administered in pregnancy and, at therapeutic doses, malformations have not been reported. Some strains of quinine from Southeast Asia and South America have become resistant. Quinine is the treatment of choice for the drug-resistant severe Plasmodium falciparum. The antimalarial mechanism of qui...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases
دوره 9 3 شماره
صفحات -
تاریخ انتشار 2009